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Optimal Carbon Abatement

in a Stochastic Equilibrium Model

with Climate Change

Abstract: This paper studies a dynamic stochastic general equilibrium

model involving climate change. Our model allows for damages on the

economic growth rate resulting from global warming. Our calibration cap-

tures effects from climate change and feedback effects on the temperature

dynamics. In particular, we are able to match estimates of the future tem-

perature distribution provided in the report of the International Panel of

Climate Change (2014). We then solve for the optimal state-dependent

abatement policy. In our simulations, the costs of this policy measured

in terms of lost GDP growth are moderate. On the other hand, postpon-

ing abatement action could reduce the probability that the climate can be

stabilized. For instance, waiting for 10 years reduces this probability from

60% to 30%. Waiting for another 10 years leads to a probability that is

less than 10%. Finally, doing nothing opens the risk that temperatures

might explode and economic growth decreases significantly.
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1 Introduction

Carbon dioxide is the most important anthropogenic greenhouse gas. The atmospheric

concentration of carbon dioxide has increased from a pre-industrial level of about 280ppm

to approximately 400ppm in 2014. According to results from ice core drilling, this is

the highest concentration in the last 800,000 years. Additionally, anthropological carbon

dioxide emissions have continuously increased during the last century. The data suggests

that not just emission itself, but the average annualized growth rate is increasing over

time.1 Until now, average land and surface temperatures have already risen by approxi-

mately 0.9◦C since the start of the industrial revolution. The fifth assessment report of

the International Panel of Climate Change (2014) provides four representative climate

scenarios depending on the future evolution of greenhouse gas emissions, referred to as

representative concentration pathways (RCPs). Simulations show that the uncontrolled

trajectory RCP8.5 (similar to our business-as-usual scenario) might result in a carbon

dioxide concentration of about 1000ppm and an unbroken average temperature increase

of approximately 4◦C by the end of this century.2 Therefore, crucial questions are whether

mankind can still stop this development and how much it would cost to stabilize the cli-

mate system.

To address these issues, our paper proposes a stochastic optimization-based general equi-

librium model for the optimal abatement policy. We provide a realistic calibration and

solve the model numerically. Furthermore, in contrast to most of the literature we allow

for random evolutions of the key variables such as CO2 concentration, global temperature

and world GDP. We can thus determine the optimal state-dependent policy, study this

policy across different future scenarios and make model-based statements about the like-

lihood of certain events. We show that by implementing the optimal policy the odds are

about 60-70% that the 2◦C target is kept. The costs are moderate and economic growth is

only slightly affected in the beginning. In the long run the economic growth will recover.

Postponing actions by only 10 years decreases the probability to about 30%. Waiting for

another 10 years reduces the chances to less than 10%. Doing nothing opens the risk that

temperatures might explode leading to an implosion of GDP growth.

1Source: International Panel of Climate Change (2014), Atmospheric carbon diox-
ide Data: http://co2now.org/Current-CO2/CO2-Now/, Global Carbon Emission Data:
http://cdiac.ornl.gov/trends/emis/meth reg.html

2New et al. (2011) give an overview on the implications of a such an outcome. These range from the
absence of summer sea ice in the Arctic ocean, permafrost melting, heavy sea-level rise far beyond 2100
up to die-back of the Amazon forest. Feedback effects to greenhouse gas warming through releases of
methane and carbon dioxide would further fuel the climate change.
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Our paper is related to the several studies using integrated assessment models (IAM):3

Firstly, the DICE model (Dynamic Integrated Climate and Economy) is the most common

framework to study optimal carbon abatement. It combines a Ramsey-type model for

capital allocation with deterministic dynamics of emissions, carbon dioxide and global

temperature. Notice that it is formulated in a deterministic setting, see for example

Nordhaus (1992, 2008), Nordhaus (2014). Kelly and Kolstad (1999) extend this model to a

situation where the decision maker learns about the unknown relation between greenhouse

gas emissions and temperature. Crost and Traeger (2014) and Ackermann et al. (2013)

analyze versions where one component is assumed to be stochastic.4 Cai et al. (2015) study

a stochastic generalization referred to as DSICE model. Their approach is computationally

involved, since it is based on high-dimensional Markov chains. However, both carbon and

temperature dynamics are deterministic.

By contrast, we suggest a flexible stochastic IAM that does not fall into the class of DICE

models. All components are genuinely stochastic. In particular, it involves parsimonious

stochastic dynamics for the world temperature. We can thus offer a way to simultaneously

calibrate two decisive climate-sensitivity measures (TCR, ECS) which play an important

role in the report of the International Panel of Climate Change (2014). Transient climate

response (TCR) measures the total increase in average global temperature at the date

of carbon dioxide doubling. Equilibrium climate sensitivity (ECS) refers to the change

in global temperature that would result from a sustained doubling of the atmospheric

carbon dioxide concentration after the climate system will have found its new equilibrium.

Notice that the report of the International Panel of Climate Change (2014) provides

detailed estimates about the distribution of these measures in the future. Since our

approach allows for a stochastic world temperature, we can match moments beyond the

first moment, which gives us the opportunity to capture some of the inherent uncertainty

of the problem.5 Finally, as suggested by empirical evidence presented in Dell et al. (2009,

2012), our model postulates that temperature negatively affects the growth rate of real

GDP, rather than its level (as in the DICE approach).

3IAMs can broadly be divided into two classes: welfare optimization models which choose an optimal
abatement policy and simulation models that renounce an optimization routine and rather evaluate
specific policy scenarios. Such a framework combines knowledge from different areas of science to an
unified model that describes interactions between greenhouse gas emissions, the climate system and the
economy.

4In contrast to our paper, Crost and Traeger (2014) do not allow for stochastic temperature dynamics,
but consider uncertainties in the damage function. Ackermann et al. (2013) introduce transitory uncer-
tainty of the climate sensitivity parameter into the DICE model. At first, only the probabilities of five
possible values are known. The actual value becomes known at a predefined date in the future.

5See, e.g., the remarks of Nordhaus (2008) on the uncertainty of the problem.

2



As in our paper, Pindyck (2011, 2012, 2014) studies an endowment economy. However,

he solves a static instead of a dynamic optimization problem and calculates the so-called

willingness to pay. This is the fraction of consumption that is necessary to keep global

warming below some target temperature, e.g. 3◦C. Similarly as in our paper, he supposes

that global warming has a negative effect on the consumption growth rate. However, he

abstracts from carbon dioxide emissions.

Bansal et al. (2014) show that the social costs of carbon (SCC), which are an indicator

of damage done by emitting carbon dioxide, are significant if long-run risk consumption

dynamics are combined with recursive utility. They compare this benchmark framework

with three models that do not involve long-run risk, but differ with respect to the prefer-

ence specifications (one recursive, two CRRA). These scenarios generate negligible SCC.

Bansal et al. (2014) conclude that recursive preferences should be combined with long-

run risk consumption dynamics to obtain high SCC.6 By contrast, our paper shows that

significant SCC can be generated in a model with consumption dynamics involving a

long-run-risk feature, but time-additive preferences.

Notice that many integrated assessment models apply coarse discretizations. Nordhaus

(2014) present a DICE model using five-year intervals. Nordhaus (2008) even relies on a

model with ten-year intervals. Other popular models use similar discretizations.7 Only

few recent papers study finer discretizations. For instance, Cai et al. (2012) consider

a continuous-time version of Nordhaus’ DICE model. Their results significantly differ

from those obtained in discrete settings. Besides, many models analyze uncertainty, if

at all, via Monte Carlo simulation. Stanton et al. (2009) review about thirty existing

integrated assessment models. They report that none of these models can generate fat-

tailed distributions of the temperature. This is not in line with the empirical evidence

about non-negligible risks for extreme climate changes given in the fifth assessment report

of the International Panel of Climate Change (2014). To address these issues, our model

is formulated in continuous time and can produce a temperature distribution with fat

tails.

As in most of the above-mentioned papers, the starting point for our economic analysis

of climate change is an integrated assessment model. Consequently, our model consists of

three components: carbon dioxide model, climate model, and economic model. Section 2

6Daniel et al. (2015) analyze optimal taxation of carbon emission. They find that with recursive
preferences the optimal carbon taxation rate is expected to decline over time, while using an additive
utility structure implies an increasing rate. They consider a model with 31 nodes only.

7Some examples among many others are PAGE (Policy Analysis of the Greenhouse Effect, see Hope
(2006)) and FUND (Climate Framework for Uncertainty, Distribution, Negotiation, see Tol (2002a,b).
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describes these components and characterizes the equilibrium of the economy. Section 3

calibrates all model components. Section 4 presents our benchmark results. Additional

robustness checks can be found in Section 5 where we also discuss the effect of assum-

ing recursive preferences that disentangle risk aversion from elasticity of intertemporal

substitution. Section 6 concludes.

2 Model Setup

This section presents the model setup and describes its equilibrium. Figure 1 depicts

the three building blocks of our framework (carbon dioxide model, climate model, and

economic model).

[Insert Figure 1 here]

The carbon dioxide model keeps track of the carbon dioxide concentration in the atmo-

sphere. This concentration increases by anthropological and also non-man made carbon

dioxide shocks and it decreases since natural sinks such as oceans absorb carbon dioxide.

Society can control anthropological carbon dioxide emissions by choosing an abatement

strategy which reduces the current (business-as-usual) emissions. These efforts are costly.

The climate model measures the average world temperature and its departure from the pre-

industrial level. Empirically, there is a (noisy) positive relation between carbon dioxide

concentration and world temperature. Our temperature process captures this relation

and allows for possible feedback effects.

The economic model describes the dynamics of global GDP (syn. endowment process).

Global warming can have a negative influence on economic growth, i.e. on the drift of

global GDP. Society can only indirectly mitigate this damaging effect by choosing the

above mentioned abatement strategy. This is the link of the economic model to the

emission model, which completes the circle.

Society (syn. mankind or decision maker) chooses an optimal abatement strategy whose

costs are deducted from the endowment. The remaining part of this endowment must be

consumed so that an equilibrium materializes.
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2.1 Carbon Dioxide Model

The total concentration of carbon dioxide in the atmosphere is given by the dynamics

dYt = Yt [(µy(t)− αt)dt+ σydW
y
t ] . (1)

We refer to (1) as carbon dioxide dynamics or process. Here W y = (W y
t )t≥0 is a standard

Brownian motion that models unexpected shocks on the carbon dioxide concentration.

These could be the result of environmental shocks such as volcano eruptions or earth-

quakes, but they can also be man-made. The volatility of these shocks σy is assumed

to be constant. Atmospheric carbon dioxide increases with an expected growth rate of

µy that models the current growth path of the carbon dioxide concentration. In other

words, µy is the growth rate if society does not take additional actions to reduce carbon

dioxide emissions. We thus refer to µy as the business-as-usual drift of the carbon dioxide

process. Notice that it also involves all past policies which have been implemented to

reduce carbon dioxide emissions.

Society can however pursue new policies to reduce emissions. We refer to such an addi-

tional effort as an abatement strategy α = (αt)t≥0. In other words, the abatement policy α

models how additional actions change the expected growth of the carbon dioxide concen-

tration, i.e. these are abatement policies beyond business-as-usual (BAU). By definition,

this differential abatement policy has been zero in the past (αt = 0 for all t < 0). If no

abatement policy is chosen and society sticks to BAU, we also use the notation Y BAU

instead of Y . Furthermore, the process Y e
t = Yt − Y PI measures the excess carbon diox-

ide concentrations in the atmosphere, i.e. the part of the concentration that exceeds the

pre-industrial level Y PI and that is caused by human activities.

From our model for the carbon dioxide concentration, we can derive the implied dynamics

of CO2 emissions. These dynamics are equal to the change in the carbon concentration

reduced by the amount of carbon that natural sinks such as oceans absorb. We also

add unexpected carbon dioxide shocks. Formally, let et denote the time-t anthropological

carbon dioxide emissions. Following Nordhaus (1992) and Kelly and Kolstad (1999),

among others, we assume that excess carbon dioxide declines with a constant decay rate

δy > 0 capturing the impact of natural sinks. Put differently, without new emissions the

carbon concentration reverts back to the pre-industrial concentration Y PI. Therefore, we

can express the carbon dioxide dynamics in terms of the carbon dioxide emissions

dYt = ζee
α
t dt− δy(Yt − Y PI)dt+ YtσydW

y
t , (2)
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where ζe is a factor converting emissions into concentrations.8 Equation (2) can be con-

sidered as an ecological budget constraint : The total change in carbon dioxide is (up to

environmental shocks) the difference between anthropological emissions and natural car-

bon sequestration. By equating (1) and (2), we can solve for the anthropological emissions

of carbon dioxide (short: emissions):

eαt =
Yt
ζe

[
µy(t)− αt + δy

(
1− Y PI

Yt

)]
. (3)

Equation (3) provides the relation between the abatement strategy and the anthropo-

logical emissions under that strategy. Since society can reduce emissions at a cost, this

equation will be used to transform emissions reductions into the abatement strategy. We

use the notation eBAU
t for business-as-usual emissions (α = 0). If there are no technologi-

cal breakthroughs, then emissions cannot be negative.9 This yields to the following upper

bound on the abatement policy

αt ≤ µy(t) + δy

(
1− Y PI

Yt

)
, (4)

i.e. technological restrictions prevent society from implementing very high abatement

policies. This insight is important since it makes it harder for society to make up for

opportunities that have been missed in the past. Furthermore, we assume that society

cannot make a profit if it raises emissions beyond BAU, i.e. we restrict αt ≥ 0.

Finally, we define the so-called emission control rate as εα = (eBAU−eα)/eBAU. This quan-

tity denotes the fraction of abated carbon dioxide emissions compared to BAU. Equiva-

lently, it is the percentage of carbon dioxide emissions which is prevented from entering

the atmosphere via the abatement policy α. In our comparative statics, this facilitates

comparisons with other papers.

2.2 Climate Model

The starting point for our climate model is the empirically well documented logarithmic

dependence between global warming and atmospheric carbon dioxide concentrations (see

International Panel of Climate Change (2014)). We denote the anthropological increase

8Carbon dioxide emissions are measured in gigatons (GtCO2), whereas concentrations are measured
in parts per million (ppm).

9We interpret an active man-made removal of carbon dioxide from the atmosphere as negative CO2

emissions. In our benchmark calibration, we forbid negative emissions.
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in temperature from its pre-industrial level by Tt. A simple deterministic description of

this relation is

Tt = ητ log

(
Yt
Y PI

)
, (5)

where ητ is a constant relating the change in global temperature to changes in carbon

dioxide concentration (climate sensitivity parameter). Applying Ito’s lemma to (5) and

using (1) implies

dTt = ητ

(
µy(t)−

1

2
σ2
y − αt

)
dt+ ητσydW

y
t

Since the relation between the temperature increase and carbon dioxide concentration is

not deterministic (as assumed in (5)), but noisy, we add a second Brownian shock W τ to

these dynamics. Furthermore, there is empirical evidence that the distribution of future

temperature changes is right-skewed.10 One reason for this is that there might be delayed

climate feedback loops triggered by increases in global temperature. This line of argument

suggests that the temperature dynamics involve a self-exciting jump process whose jump

intensity and jump size depend on the temperature itself. Intuitively, this means that

an increase in temperature makes future increases both more likely and potentially more

severe. Therefore, a self-exciting process captures the idea of feedback loops and at the

same time allows for calibrating the skewness of the distribution of future temperature

changes. We thus arrive at the following model for the anthropological temperature

increase

dTt = ητ

(
µy(t)− αt −

1

2
σ2
y

)
dt+ στ

(
ρyτdW

y
t +

√
1− ρ2

yτdW
τ
t

)
+ θτ (Tt)dN

τ
t . (6)

We refer to (6) as global warming process. The Brownian motions W τ and W y are inde-

pendent. Furthermore, N τ = (N τ
t )t≥0 is the above-mentioned self-exciting process whose

jump intensity πτ (Tt) and jump size θτ (Tt) can depend on Tt itself. We explore this depen-

dence in the calibration section. The process N τ is independent of the Brownian motions.

The volatility στ of climate shocks is assumed to be constant. The warming process is

correlated with the carbon dioxide process via ρyτ . The drift ητ
(
µy(t)− αt − 1

2
σ2
y

)
mod-

els the direct impact of an increase in atmospheric carbon dioxide on world temperature.

Notice that there are also indirect effects resulting from the feedback loops captured by

the self-exciting process N τ .

10See, e.g., International Panel of Climate Change (2014).
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2.3 Economic Model

The real world GDP dynamics are given by

dCt = Ct

[
gtdt+ σc

(
ρcydW

y
t +

√
1− ρ2

cydW
c
t

)]
− (1− ζκ)κ(t, α)dt. (7)

The process W c = (W c
t )t≥0 is a third Brownian motion that is independent of W y, W τ and

N τ . The volatility of economic shocks σc is assumed to be constant. The GDP process is

correlated with the carbon dioxide process via ρcy.
11 The GDP process has an expected

growth rate gt of the following linear form12

gt = g − ζdTt,

where g denotes the gross growth rate of real GDP disregarding potential negative effects

from global warming. These are modeled by the second term that captures the impact

stemming from temperature increases. Here ζd is a damage scaling factor that converts

temperature increase into reduction of economic growth. If ζd is positive, then the ex-

pected growth rate of real GDP decreases when the carbon dioxide concentration and, in

turn, the global temperature increases.13

The incremental abatement costs of an abatement policy α are described by the cost

function κ so that the costs over the small time interval [t, t+ dt] are given by

dct = κ(t, α)dt.

We assume a sufficiently smooth cost function κ that is convex in the abatement policy.

This convexity ensures that the marginal costs are increasing in α. Additionally, it is

reasonable to assume that

κ(t, 0) = 0

11The data suggest that the GDP process is correlated with the carbon dioxide process, but is uncor-
related with the warming process. Therefore we set ρcτ = 0.

12Section 5.2 studies a quadratic specification.
13The existing literature on integrated assessment models captures economic damages as reduction of

output or consumption. Furthermore, it is assumed that damages are reversible. Pindyck (2012) argues
that this is unrealistic since many damages from climate change (health, coastal property from sea level
rise, natural ecosystems, human settlements) rather lead to reductions in capital than consumption. Dell
et al. (2009, 2012) provide empirical evidence that higher temperatures substantially reduce economic
growth in poor countries.
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for all t, since doing nothing should not generate costs. We interpret the abatement costs

as the gross cost differential between more carbon efficient technologies reducing carbon

dioxide emissions (green technology) and BAU technologies. Notice that there are also

positive growth effects of investing in green technologies. So subtracting the gross costs

from world GDP would ignore these effects. To address this issue, our model contains the

parameter ζκ. Of course, investments in green technologies contemporaneously slow down

global GDP growth since they involve additional costs. Nevertheless, these investments

might also stimulate current and future growth. The scalar ζκ thus allows us to capture

this effect. Put differently, ζκ models the present value of current and future growth effects

stemming from investments in green technologies. Consequently, the following amount is

deducted from the society’s endowment (GDP):

(1− ζκ)κ(t, α)dt.

Let us briefly consider two polar cases: On the one hand, green technologies cannot be

as efficient as investments in BAU technologies (ζκ = 1) since otherwise the problem

would be trivial and society would fully switch to green technologies. On the other hand,

if the costs for green technologies are fully deducted (ζκ = 0), we ignore all potential

growth effects, which might be considered as an extreme view. Therefore, it seems to be

reasonable that ζκ ∈ (0, 1).

2.4 Equilibrium

Society faces an infinite time horizon. In general, utility from consumption could be

negatively affected by carbon dioxide concentration. For instance, smog can make the lives

of people pretty uncomfortable in cities. This tradeoff between utility from consumption

and disutility from pollution is described by the following Cobb-Douglas function

ω(c, y) =
cβ

y1−β ,

where the denominator y1−β is generating disutility. The parameter β ∈ (0, 1] weights

utility from consumption (consumption preference) against disutility from carbon dioxide

pollution. To summarize, the agent gains utility from a composite good that consists of

consumption and the inverse of pollution.14

14Most integrated assessment models such as DICE and FUND assume implicitly β = 1. Our setup
involves a second channel, since we directly allow for an impact of pollution on happiness. To be conser-
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We use the notation ωαs = ω(Cα
s , Y

α
s ), s ≥ 0, for any given abatement strategy α. We as-

sume that society derives utility from consumption and disutility from pollution according

to the following CRRA utility function:

u(ω) =
1

1− γ
ω1−γ.

The time-t utility index Jαt associated with a given abatement strategy α over the planning

horizon [0,∞) is thus defined by

Jαt = Et
[∫ ∞

t

e−δ(s−t)u(ωαs )ds

]
= Et

[∫ ∞
t

e−δ(s−t)
1

1− γ

(
(Cα

s )β

(Y α
s )1−β

)1−γ

ds

]
.

The decision maker chooses an admissible abatement policy α in order to maximize his

utility index Jαt at any point in time t ∈ [0,∞). In equilibrium, he must consume his

endowment reduced by the costs of the optimal abatement policy. An admissible policy

must satisfy (4) and must ensure that GDP stays positive, Ct ≥ 0 for all t ≥ 0. The

class of all admissible abatement policies at time t is denoted by At. The indirect utility

function is given by

J(t, c, y, τ) = sup
α∈At
{Jαt | Ct = c, Yt = y, Tt = τ} (8)

We solve the utility maximization problem (8) by applying the dynamic programming

principle. The corresponding Bellman equation reads

0 = sup
α

{
Jt + (c [g − ζdτ ]− (1− ζκ)κ(t, α)) Jc +

1

2
c2σ2

cJcc + y(µy(t)− α)Jy +
1

2
y2σ2

yJyy

+ cyρcyσyσcJcy + ητ

(
µy(t)− α−

1

2
σ2
y

)
Jτ +

1

2
σ2
τJττ + yρyτσyστJyτ

+ πτ (τ)
[
J(t, c, y, τ + θτ )− J

]
+ f(ω(c, y), J)

}
, (9)

where f(ω, J) = u(ω) − δJ . Subscripts denote partial derivatives (e.g. Jt = ∂J/∂t).

Details on how to solve the Bellman equation can be found in the appendix.

vative, we however choose β = 1 in the benchmark case. In robustness checks, we then study the effect
of disutility from pollution.
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3 Calibration

In this section, we provide a realistic calibration of all model components. Table 1 sum-

marizes the calibration results and serves as our benchmark calibration. Notice that for

this calibration we disregard disutility from pollution (β = 1). We consider a decision

maker with time additive CRRA utility where the risk aversion is γ = 1.45 and the time

preference rate is δ = 0.015.15 These are standard assumptions in the IAM literature (e.g.

recent version of the DICE model by Nordhaus (2014)) and simplify comparisons. Both

assumptions can be considered as conservative. If we allow for disutility from pollution

or choose an elasticity of intertemporal substitution that is bigger than the inverse of the

risk aversion,16 then the (optimal) actions of society will be more resolute. Among other

things, the robustness section explores these situations.

[Insert Table 1 here]

3.1 Carbon Dioxide Model

We calibrate the carbon dioxide process (1) using data on the historical carbon dioxide

concentration in the atmosphere.17 Monthly data is available since 1958. The crosses in

Graph (a) of Figure 2 mark this data. The pre-industrial carbon dioxide concentration is

Y PI = 280 ppm which is usually chosen as the pre-industrial level (see, e.g., International

Panel of Climate Change (2014) and the references therein).

As starting value for the carbon dioxide process, we use the concentration in the atmo-

sphere that was observed in July 2014, i.e. Y0 = 399 ppm. To estimate the drift and

diffusion parameter of (1), we set α = 0 since by definition the abatement policy has been

zero in the past. Calculating the standard deviation of the log changes of Y we obtain

the volatility σy = 0.0016.

To estimate µy(t), we first try to fit a straight line (grey dotted line in Graph (a)).

Apparently, this leads to an underestimation around 1960 and 2010. Graph (b) depicts

15Giglio et al. (2015) provide an empirical justification for the use of very small long-run discount rates.
Heal (2009) and Stern (2007) argue that due to ethical reasons δ should be small for the long run.

16Notice that the elasticity of intertemporal substitution is 1/γ in the time additive case. If one works
with recursive utility, then one typically uses elasticities that are bigger than 1/γ. This means that
the decision maker is more elastic and is more likely to forgo current consumption for additional future
consumption.

17Source: Mauna Loa Observatory, Hawaii. Data available at http://co2now.org/Current-CO2/CO2-
Now/.
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an extrapolation of this fit until 2115 where the effect becomes even more pronounced.

We thus use a slightly different approach. It turns out that the excess carbon dioxide

concentration Y e = Y −Y PI has a drift which is (almost) constant. We thus estimate this

drift via a least squares minimization and obtain µe = 0.0217. Since we can calculate the

expected carbon concentration in two ways by either using Y or Y e, this yields a condition

on µy(t). More precisely, we determine µy(t) in such a way that the expected carbon

concentrations computed in both ways match, i.e. Y0 exp
{∫ t

0
µy(s)ds

}
= Y e

0 exp {µet} +

Y PI. We thus obtain the following time-dependent drift

µy(t) = µe
Y e

0 eµet

Y e
0 eµet + Y PI

,

The dark line in Graph (a) shows that this fit is almost perfect.

[Insert Figure 2 here]

Relation (2) also involves the decay rate δy and the factor converting masses of carbon

dioxide emissions into carbon concentration ζe. Following Nordhaus (1992), we assume a

carbon dioxide residence time of 120 years implying δy = 0.0083.18 Then a least squares

minimization19 yields a conversion factor of ζe = 0.0989. This is the slope of the regression

line in Graph (c).

3.2 Climate Model

The calibration of the global warming process (6) is divided into two steps. First, we

calibrate the direct impact of carbon dioxide concentration on global warming (captured

by the continuous part of the model). In a second step, we calibrate the jump size and

jump intensity such that the model can generate the above mentioned feedback effects.

[Insert Figure 3 here]

To estimate the drift of the process, we use historical data on carbon dioxide concentration

and global warming.20 Notice that the starting point for our model of the global warming

18The residence time is the average amount of time that a carbon dioxide particle spends in the
atmosphere.

19We discretize (2) and obtain Yt+1 − Yt = ζeet − δyY et . We have data on all variables except for ζe.

Therefore, we determine ζe by solving the minimization problem minζe
∑N
i=1 [Yi+1 − Yi + δyY

e
i − ζeei]

2
.

Here Yi denote historical carbon dioxide concentrations and ei emissions.
20Source: United Kingdom’s national weather service. Annual data available at

http://www.metoffice.gov.uk/ since 1850.
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dynamics was (5). Therefore, we estimate ητ by running a linear regression of global

warming data on log-carbon dioxide data. Put differently, we calculate

min
ητ

N∑
i=1

[
Ti − ητ log

(
Yi
Y PI

)]2

.

Here Ti denotes the temperature above the pre-industrial level and Yi denotes the carbon

dioxide concentration at time ti. Our estimation yields ητ = 2.592. The linear model

performs well with R2 > 0.8. Graph (a) of Figure 3 depicts the data and the estimate.

To calibrate the diffusion coefficient στ of (6), we use data on a measure called the transient

climate response (TCR). TCR measures the total increase in average global temperature

at the date of carbon dioxide doubling, t2× = inft{t ≥ 0 | Yt = 2Y PI}. The data comes

from CMIP5.21 They simulate the future climate dynamics and obtain a multimodel

mean (as well as median) of about E[TCR] = 1.8◦ and a 90% confidence interval of

[1.2◦C, 2.4◦C]. This points towards an approximately symmetric distribution for TCR,

which is in line with our Brownian assumption. Further, notice that our above estimate

of ητ leads to a total temperature increase of about ητ log(2) = 1.797 at the relevant

date t2× for TCR. This is also in line with the CMIP5 estimate. Therefore, we are

left with finding στ , which we achieve by using the information about the confidence

interval. The 95%-quantile is 1.65 standard deviations above the mean. This implies

a standard deviation of σTCR = 0.6◦C/1.65 = 0.364◦C. We choose the volatility στ

such that our model fits the distribution of TCR at the time when carbon dioxide is

supposed to double. For this purpose, we estimate the doubling time t2× via Monte Carlo

simulation: We sample 1 million uncontrolled carbon dioxide paths and take the average

time of carbon dioxide doubling. Then, from the properties of a Brownian motion, we can

estimate στ = σTCR/
√
E[t2×] where E[t2×] ≈ 40, i.e. doubling occurs on average in 2055.

Finally, we simulate 1 million global warming paths and verify that our distribution of

TCR matches the above mentioned quantiles (see Graph (b) of Figure 3).22 Furthermore,

we estimate a small correlation of about ρyτ = 0.04.

In a second step, we calibrate the jump intensity and size using IPCC estimates for the

equilibrium climate sensitivity (ECS). ECS refers to the change in global temperature that

would result from a sustained doubling of the atmospheric carbon dioxide concentration

21CMIP5 refers to Coupled Model Intercomparison Project Phase 5. See http://cmip-
pcmdi.llnl.gov/cmip5/ for further information.

22Here we set the jump part equal to zero such that the results are not driven by warming feedback
effects. See also the definition of ECS in the next section.
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after the climate system will have found its new equilibrium. This process is presumably

affected by feedback effects kicking in after the temperature has increased significantly

(e.g. the date related to TCR). Since the jump part in our model captures feedback effects,

we use ECS data to estimate the corresponding parameters. Unfortunately, there is no

consensus distribution for ECS because finding a new equilibrium might take hundreds

of years. Summarizing more than 20 scientific studies, the International Panel of Climate

Change (2014) however states that ECS is “likely” in the range of 1.5◦C to 4.5◦C with

a most likely value of about 3◦C.23 Additionally, there is a probability of 5 to 10% that

doubling the carbon dioxide concentration leads to an increase in global temperature of

more than 6◦C, while its extremely unlikely (i.e. less than 5%) that temperature increase

is below 1◦C. These numbers suggest that ECS has a right-skewed distribution which can

be generated by jumps.

We assume that the climate system will find its new equilibrium 100 years after the

carbon dioxide concentration will have doubled. We choose a functional form and an

appropriate parametrization for the jump size and jump magnitude such that we can

reproduce the above mentioned mean and quantiles of ECR by running Monte Carlo

simulations. Furthermore, we perform the calibration in such a way that the constructed

distribution for TCR is preserved. The latter is achieved by allowing for very small

negative jumps when the temperature increase is still low. We thus choose the following

parametrization of the climate shock intensity and magnitude:

πτ (τ) =

(
0.95

1 + 2.8e−0.3325τ
− 0.25

)+

,

θτ (τ) = −0.0075 + 0.085 log(max(0.5, τ)).

The simulated ECS distribution is depicted in Graph (c) of Figure 3.

3.3 Economic Model

Abatement Cost Function The calibration of the cost function κ in (7) is based on

a prognosis for the marginal greenhouse gas abatement costs for the years 2015 and 2030

provided by McKinsey and Company (2009, 2010). For the year 2030, they estimate

that under BAU the total emissions of greenhouse gases (GHG) would reach 66GtCO2e

and analyze the expected abatement costs. Under rather optimistic assumptions, they

23In the language of IPCC, the word “likely” means with a probability higher than 67%.
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report an abatement potential of 38GtCO2e at a total cost of 150 billion euros. McKinsey

suppose that for 11GtCO2e of abatement the net costs are negative because savings from

implementing energy-efficient measures – compared to the BAU scenario – exceed the

initial investment costs. The crosses in Figure 4 depict the McKinsey data.

[Insert Figure 4 here]

Notice that our cost function κ maps abatement policies α into costs C, whereas the

McKinsey data maps the absolute quantity of greenhouse gas abatement A into marginal

costs MAC. We thus have to transform the data. In order to avoid issues arising from

negative abatement costs, we follow Ackermann and Bueno (2011) and disregard the

negative part of the marginal costs.

In a first step, we fit the McKinsey data using the following functional form for the

marginal abatement cost function:

MAC(t, A) =
c1(t)A

c2(t) + c3(t)A+ c4(t)A2
.

As a result, we obtain coefficients c1(t), . . . , c4(t) for t = 1 (=̂ year 2015) and t = 16 (=̂ year

2030).24 The variable A is the absolute quantity of greenhouse gas abatement (measured

in GtCO2) compared to the business-as-usual scenario, i.e. the difference between BAU-

emissions and controlled emissions, A = eBAU − eα. As can be seen in Figure 4, our

estimates of ci fit the positive parts of the marginal abatement costs well. In both cases,

we obtain R2 > 0.96. Notice that our estimates are more conservative than the McKinsey

prognosis. We are only slightly more optimistic for values around 6 GtCO2 in the year

2015, but this is only true for the marginal costs. The total costs in our estimation are

always higher than in the McKinsey prognosis. This is because we do not allow for initial

“costs” that are negative.

Second, we transform marginal costs MAC into (absolute) costs C. We thus compute

the anti-derivative C(t, A) of the marginal costs with respect to A and evaluate C at the

available data points A1(t), . . . , An(t). This yields values C1(t), . . . ,Cn(t), t ∈ {1, 16}.
The resulting data points (A1(t),C1(t)), . . . , (An(t),Cn(t)) can now be used to determine

the cost function κ(t, α) for t ∈ {1, 16}. We thus transform the absolute quantities of

24The exact values of c1, . . . , c4 are not relevant in the sequel.
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greenhouse gas abatement A into abatement policies α. Notice that by (3) we have

αt = µy(t)−
ζe
Yt
eαt + δy

(
1− Y PI

Yt

)
= µy(t)−

ζe
Yt

(eBAU
t − At) + δy

(
1− Y PI

Yt

)
, (10)

i.e. the relation between A and α is state-dependent. We start out by approximating this

relation via

αt = µy(t)−
ζe

E[Y BAU
t ]

(eBAU
t − At) + δy

(
1− Y PI

E[Y BAU
t ]

)
, (11)

where eBAU denotes uncontrolled carbon dioxide emissions.25 Now, we can rewrite the

data points in terms of α as (α1(t),C1(t)), . . . , (αn(t),Cn(t)).

Third, the cost function κ is assumed to have an exponential form:

κ(t, α) = a(t) [exp(b(t)α)− 1] .

Using the data points we determine the functions a and b such that (i) the cost functions

derived from McKinsey data at 2015 and 2030 are matched, i.e. the errors in the relations

Ci(t) = a(t) [exp(b(t)αi)− 1] , i = 1, . . . , n, t ∈ {1, 16}

are minimized in a least-squares sense; (ii) a smooth interpolation between 2015 and 2030

is achieved; (iii) for a fixed level of abatement, costs slowly decrease over time.26 It turns

out that a convenient way to meet (i)-(iii) is the following specification:

a(t) = a1t
a2 + a3, b(t) = b1t

b2 .

Once we have initially constructed the cost function as described above, we iteratively

improve the approximation (11) and thus the accuracy of the cost function as follows:

We use the constructed cost function and solve the model with its benchmark calibration.

Then, we simulate sample paths of the carbon dioxide process and replace Y BAU by Y α in

(11). We update the parametrization of the cost function and repeat the procedure until

the changes in the cost function are negligible. It turns out that we can stop the iteration

25Since McKinsey and Company (2009) reports costs in 2005 euros, we transform all prices in 2005
dollars. We use the average exchange rate in 2005 that is available from the website of the International
Monetary Fund (https://www.imf.org/external/data.htm).

26The decreasing trend in abatement costs reflects the widening menu of sustainable technological
alternatives implying that abatement becomes cheaper over time. In climate change economics, there is
a consensus about decreasing abatement costs, see for instance in the DICE model, Nordhaus (2008).
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after four steps. Therefore, we apply the following improved approximation of (10):

αt = µy(t)−
ζe

E[Yt]
(eBAU
t − At) + δy

(
1− Y PI

E[Yt]

)
To avoid one additional state variable, we thus replace Yt in the denominators by E[Yt].

For our benchmark calibration, we obtain the following parameters: a1 = 4.38, a2 = 0.45,

a3 = −3.68, b1 = 3093 and b2 = −0.60. Notice that for 2015 and 2030 we achieve a very

good fit with R2 > 0.99, i.e. criterion (i) is satisfied well. In the following sections, we

also use this fit to extrapolate the costs into the future.

Section 2 argues that ζκ – measuring the relative efficiency of green versus BAU tech-

nologies – is between zero and one. However, this parameter is hard to estimate. Not

surprisingly, there is no consensus in the IAM literature on how to choose the relative

efficiency. While many integrated assessment models, such as DICE, make implicitly the

extreme assumption ζκ = 0, the CRED model (see Ackermann et al. (2011)) uses a pro-

ductivity ratio of about 0.5. To be slightly more conservative, we assume ζκ = 1/3. This

choice implies that investments in green technologies are only a third as productive as

investments in BAU technologies. Section 5.3 provides robustness checks to analyze the

impact of this parameter.

GDP Process To calibrate the consumption process, we use real GDP data from the

website of the International Monetary Fund starting in 1960.27 The crosses in Graph (a)

of Figure 5 mark this data. We obtain the following estimates of the volatility parameter

and the correlation between GDP and CO2 growth: σc = 0.0161 and ρcy = 0.2858.

[Insert Figure 5 here]

As starting value, we choose the world GDP in January 2014 which is C0 = 58.5 trillion

2005 dollars. In a second step, we calibrate the growth rate and the damage parameter.

Unfortunately, there is no consensus estimate of the economic damages triggered by an

extreme climate change within the IAM literature. To the best of our knowledge, the only

estimates can be found in Bansal and Ochoa (2011, 2012) and Dell et al. (2009, 2012).

Using economic and ecological data over 50 years from 136 countries, they find that in poor

regions a temperature increase of about 1◦C will approximately reduce economic growth

by 1.3 percentage points. This would imply ζd = 0.013. Until now, in developed countries

27Available at: https://www.imf.org/external/data.htm
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there have been no significant growth losses due to global warming. Furthermore, the

studies are silent about potential damages in the case of an extreme climate change such

as an increase of 10◦C. For this reason, they are only of limited use for calibrating ζd.

Hence, we calibrate the growth rate and damage parameter simultaneously such that the

endowment process matches the historical real GDP data in a least-squares sense, i.e. we

solve the minimization problem

min
g,ζd,ĉ

N∑
i=1

[
Cti − ĉ exp

{
g(ti − t0)− ζd

∫ ti

t0

Tsds

}]2

,

where Cti denotes historical real GDP at time ti. We estimate the growth rate and the

damage parameter to be g = 0.0317 and ζd = 0.003. Furthermore, we get ĉ = 11.857·1012.

The dark line in Graph (a) depicts the fit of the data. Graph (b) shows an extrapolation

of this fit over the next 100 years. The black line represents the median GDP projection

and the dashed lines depict the 5% and 95% percentiles. Notice that our estimate is

conservative in the sense that ζd = 0.003 is less than a fourth of the estimate for poor

countries in Dell et al. (2009, 2012).

4 Main Results

This section presents our main results for the model introduced in Section 2. In par-

ticular, we determine the optimal abatement policy, its costs, the expected evolution of

real GDP as well as expected evolution of the carbon dioxide concentration and global

average temperature changes over the next 100 years. Unless otherwise stated, we use

our benchmark calibration from Section 3 that is summarized in Table 1.

4.1 Benchmark Results

Figure 6 depicts the median evolution of the carbon dioxide concentration, GDP growth,

and global temperature change over the next 100 years. It also shows the optimally

controlled emission evolution and the emission control rate. Furthermore, the figure

depicts the BAU median evolution of these variables (in dotted lines).

[Insert Figure 6 here]
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Graph (a) illustrates that by following the optimal abatement policy the median car-

bon dioxide concentration peaks at the beginning of the next century. From this point

onwards, the decay capacity of natural carbon dioxide sinks such as oceans and forests ex-

ceeds anthropological emissions, and thus the carbon concentration declines. Furthermore,

following the optimal abatement strategy leads to a median increase in world temperature

of 2◦C by the year 2100, which can be seen in Graph (c). There is however a significant

risk for a larger increase in global temperature. For instance, the 95th percentile path of

the global temperature change reaches 3.3◦C by the year 2100.

Graph (b) shows that the negative effect of global warming leads to a decline in GDP

growth (net of damages and abatement costs). This is so for the optimal as well as the

BAU scenario. Initially, implementing the optimal policy reduces GDP growth slightly

more than sticking to BAU (α = 0). From the year 2055 onwards, the median of the

optimal GDP growth rate exceeds the BAU growth rate since investments in green tech-

nologies start to generate sustainable GDP growth. Consequently, CO2 emissions also

peak around that time point. Most importantly, the decline in growth is significantly

dampened if the optimal policy is implemented and the growth rate starts to bounce back

around 2120.

[Insert Tables 2 and 3 here]

Table 2 reports the annual median abatement costs of the optimal policy over the next

10 years. Notice that these are additional costs, i.e. costs beyond BAU, since our optimal

policy involves actions that go beyond what has already been achieved in the past. Besides,

these are gross costs since only two-thirds are deducted from world GDP. This is because

the efficiency of green technologies is assumed to be ζκ = 1/3.

Initially, the gross costs are about 6.5 billions of 2005 dollars and increase to about

36.8 billions in the year 2025, although the marginal costs of the McKinsey prognosis

are decreasing over time (see Section 3.3). This shows that optimally society raises the

abatement actions disproportionally. Furthermore, Table 3 reports present values of these

costs as seen from the year 2015 which can be calculated as follows

PV = E
[∫ Υ

0

ξt κ(t, α∗t )dt

]
, Υ ∈ {10, 15, 20},

where ξ = (ξt)t≥0 denotes the pricing kernel (syn. stochastic discount factor or deflator)

and κ(t, α∗t ) are the incremental costs of the optimal policy α∗. For CRRA utility, the
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pricing kernel is given by

ξt = e−δt
(
Ct
C0

)−γ
.

For instance, the present value for the optimal abatement policy over the next 10 years

is about 140 billion 2005 dollars.

[Insert Figure 7 here]

Graph (a) of Figure 7 shows the evolution of the warming process on an extended time

interval. The black line depicts the median evolution of the warming process. It can

be seen that the global temperature peaks around the year 2130. Additionally, we plot

several percentiles. Dashed lines show these percentiles in 10% steps from 10% to 90%.

Our results suggest that the odds are in favor of mankind if we act right now: The

temperature can be stabilized in about 60-70% of the cases if we implement the optimal

policy. Graphs (b)-(d) of Figure 7 put these findings into perspective. Postponing actions

turns the odds massively against mankind. If we wait just 10 more years, then the

probability of keeping the 2◦C target reduces to 20-30% (Graph (b)). Postponing actions

by 20 years makes it very unlikely that we keep the target since the probability goes

down to less than 5% (Graph (c)). If we continue as before and stick to BAU, then the

probability is virtually zero (Graph (d)). Of course, these bad scenarios involve massive

setbacks in consumption growth with potentially severe consequences for people. We will

further analyze these scenarios in Section 4.3.

4.2 Specific Sample Paths

[Insert Figure 8 here]

Most optimization-based integrated assessment models are deterministic. If at all, then

uncertainty is incorporated via Monte-Carlo simulations.28 More precisely, the optimal

controls are determined in a deterministic model. Then the model is enhanced by stochas-

tic elements and simulated using the optimal controls from the deterministic model. This

approach is suboptimal, since it disregards any state dependence of the truly optimal

strategies.

By contrast, a decisive and realistic feature of our approach is that we determine the

optimal abatement strategies in the full-blown model that allows for various stochastic

28There are few exceptions such as Kelly and Kolstad (1999) and Cai et al. (2015).
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shocks. Of course, this model also involves a significant volatility of the economic and

ecological key variables. Therefore, the optimal abatement policy depends on the current

state of the climate system and the economy in a significant way. Figure 8 shows four types

of scenarios represented by dashed lines:29 (i) Black lines depict the paths corresponding

to the worst case scenario in our simulations. (ii) Dark lines show the paths that belong

to a typical 95th percentile scenario. (iii) Mid-gray lines show the paths of typical median

scenario. (iv) Light lines show the paths of a typical 5th percentile scenario. The state

dependence becomes very obvious from Graph (d) around the year 2060. In the worst case

scenario, society reduces emissions significantly as a reaction to the dramatic temperature

increase which affects economic growth heavily. Besides, in the 95th percentile scenario

the abatement policy is also much more stringent than on average. In both scenarios, the

high temperatures are mainly triggered by feedback effects that are beyond the control of

mankind.

Our results confirm earlier insights: Implementing the optimal abatement policy makes it

likely, but does not guarantee a sustainable stabilization of the climate system. Further-

more, in all scenarios carbon dioxide concentrations will approximately double relative to

the pre-industrial level (peaks between 525 and 575ppm). Therefore, the risk accrues that

feedback loops materialize such as in the worst-case and the 95th percentile scenario.

4.3 Delaying Abatement Action

[Insert Figure 9 here]

Figure 9 complements the results of Figure 7 and compares the benchmark calibration

to two scenarios where the optimal abatement actions are postponed by 10 or 20 years.

It is obvious that delaying abatement action will lead to higher temperatures (as already

seen in Figure 7), which are fueled by rampant carbon dioxide emissions. We also expect

significant economic growth losses. For a delay of 10(20) years we expect the median

world GDP to be 2.2(4.3)% lower than in the optimal case (measured at beginning of the

year 2100).

Even worse, during the years of delay conservative high-carbon infrastructure with poten-

tial long lifetimes would still be built. This leads to a substantial decline in the abatement

potential for the years following the delay and, hence, the carbon abatement costs will

29These four scenarios are generated by ordering all simulated paths by the temperature reached in
2115.
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increase. In turn, investments in green technology might be postponed even further im-

plying a large loss in abatement potential.30

Figure 9 also depicts the scenarios described in Section 4.2. The results show the effects

of waiting: Even in the very optimistic 5th percentile scenario society fails to keep the

two degrees target if actions are postponed by 20 years. Therefore, the only way to

keep accumulative global warming below two degrees with a reasonable probably is to act

immediately and implement a stringent abatement policy.

4.4 Social Cost of Carbon

This section describes how our model can be used to calculate the social cost of carbon

(SCC). SCC is defined as the present value of climate damages that are caused by the

emission of an additional ton of carbon dioxide into the atmosphere during a specified year.

This additional ton of carbon dioxide emissions will lead to slightly higher temperatures,

higher damages on economic growth and thus lower consumption.

We compute SCC by comparing two quite similar simulations. In the first scenario,

we solve the model and simulate 1 million carbon dioxide, global warming and world

GDP paths as well as the optimal abatement policy. We then consider a second scenario

(impulse scenario) with an additional amount π of extra emissions in some specific year.

From that year onwards, carbon dioxide emissions are identical in both scenarios. We

label all relevant variables of the second scenario by a tilde and denote the impulse year

by [tπ, tπ + 1]. The emissions in the two scenarios have the following relation

ẽt = et + π1[tπ ,tπ+1](t) (12)

In order to achieve (12) it is necessary to change the drift of the carbon dioxide and global

warming process in the impulse scenario. Combining (3) and (12) yields the following state

dependent expression for the carbon dioxide drift in the impulse scenario

µ̃y(t) = µy(t) +
ζeπ

Yt
1[tπ ,tπ+1](t) +

(µy(t)− α + δy)(Yt − Ỹt)
Ỹt

.

Notice that the drift in both scenarios coincide before the impulse year. During this

30See McKinsey and Company (2009). This study estimates the average effective lifetime of high-
carbon infrastructure of about 14 years. However, the range of the lifetime varies heavily. While cars
have a usual lifetime of 10-20 years, coal fired power plants are usually conducted for several decades.

22



year the drift then increases. Afterwards the drift is slightly lower than in the standard

scenario.

Now, we simulate 1 million carbon dioxide, global warming and world GDP paths in the

impulse scenario.31 We compute the consumption differential ∆Ct = Ct−C̃t and calculate

its present value at the beginning tπ of the impulse year. Formally, social cost of carbon

is defined as

SCC(tπ) = Etπ

[∫ ∞
tπ

e−δ(t−tπ)

(
Ct
Ctπ

)−γ
∆Ctdt

]
.

Table 4 summarizes the social cost of carbon in the benchmark case.

[Insert Table 4 here]

Notice that the current social cost of carbon is about 128 dollars. A decisive feature of our

model is that all key variables are stochastic processes. To understand the impact of this

randomness on the size of the SCC, we have run our model taking out all stochasticity.

Then the SCC reduces to about 100 dollars, i.e. the SCC are 28% higher in our stochastic

equilibrium model.

To put the size of the SCC into perspective, we consider the cost of burning one liter of

gas (diesel). This leads to an emission of about 2.32kgCO2(2.62kgCO2).32 The social cost

of carbon is 128.15$/tCO2. Therefore, in the year 2015 the social cost for gas is

0.00232tCO2/l × 128.15$/tCO2 = 29.73 cents/l.

Similar calculations for diesel yield 33.57 cents/l. Both numbers could be interpreted as

adequate taxation for the social cost of burning gas or diesel.

5 Robustness Checks

This section presents robustness checks for different preference parameters as well as

different specifications of the cost function and the damage process. Stanton et al. (2009)

and Pindyck (2013), among others, argue that these inputs have a significant effect on

31We use the same random numbers in both simulations in order to avoid a numerical effect on the
results.

32See Greenhouse Gas Emissions from a Typical Passenger Vehicle, U.S. Environmental Protection
Agency, Office of Transportation and Air Quality, EPA-420-F-14-040a, May 2014
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the abatement policy. We discuss the main drivers of the abatement demand and discuss

the effect of recursive utility on this demand.

5.1 Preference Parameters

Time Preference Rate Pindyck (2013), among others, argues that abatement policies

strongly depend on the time preference rate. In general, there is a lot of debate about

this parameter in the IAM literature. This is because the time preferences put implicitly

weights on the current and future generations: A higher value puts more weight on the

current generation, whereas a lower value shifts some of this weight to future generations.

A tension arises since the current generation is not as severely affected by the climate

change as the future generations, but must today decide upon an optimal abatement

policy and pay for it. Of course, more stringent actions reduce current consumption, but

have far reaching consequences for future generations who might benefit the most.

Figure 10 shows how the time preference parameter affects our results. We perform

comparative statics by varying δ ∈ {0.1%, 1.5%, 2.6%}. We refer to the very low discount

rate of δ = 0.1% as Stern discounting since Stern (2007) suggests such a low rate.

[Insert Figure 10 here]

Intuitively, with a higher time preference rate we expect more consumption in early years

and less in the far future. This is reflected in Figure 10. A decision maker with a high

time preference rate implements a very moderate abatement policy. However, such a

policy leads to high carbon dioxide growth rates and might thus destabilize the climate

system. Besides, GDP growth is not significantly larger in early years. From around 2080

onwards, we expect the GDP growth of the Stern calibration (light lines, δ = 0.1%) to

exceed the growth rates resulting from higher time preference rates. While the optimal

policy from using a high discount rate does not lead to median temperature dynamics

that are below the two-degrees target, using Stern discounting yields dynamics that meet

this target.

Risk Aversion The effect of changing the degree of relative risk aversion is well-

understood in the literature, but it is at first sight counterintuitive: The abatement policy

is less stringent if risk aversion increases. Following Pindyck (2013) this is because for a

higher level of risk aversion, the marginal utility of consumption declines faster. However,
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consumption is expected to grow and consequently utility from future consumption de-

creases with risk aversion. For a higher level of risk aversion society thus implements a less

stringent abatement policy leading to higher emissions and a higher global temperature.

[Insert Figure 11 here]

Figure 11 shows the effect of relative risk aversion on emissions, concentrations, temper-

atures and GDP growth. Dark lines represent trajectories for γ = 3 and light lines for

γ = 2/3. Apparently, risk aversion has a large impact on the abatement policy. The

simulations confirms the above-mentioned result that with increasing risk aversion the

emission control rate is lower. This implies higher carbon dioxide concentrations, higher

temperatures and higher damages for future generations. Another way to understand this

seemingly counterintuitive result is by noting that γ plays a dual role for a decision maker

with time-additive CRRA utility. It models both the risk aversion and the inverse of the

elasticity of intertemporal substitution. Therefore, increasing the risk aversion yields a

decrease of this elasticity and makes society less willing to substitute current for future

consumption. Consequently, society implements a weaker abatement policy.

Disutility of Pollution We now analyze the effect of including disutility from carbon

dioxide concentration. For instance, pollution increases the hazard of respiratory illnesses

and can make life very unpleasant (e.g. smog). Therefore, one can argue that pollution

negatively affects utility.

[Insert Figure 12 here]

Intuitively, a stronger disutility from pollution shall imply a more stringent abatement

policy. In our model, the parameter β measures the tradeoff between utility from con-

sumption and disutility generated by pollution. Therefore, we vary β ∈ {1, 0.9, 0.8}.
Figure 12 confirms our intuition. Furthermore, the effect of reducing β = 1 (Benchmark

case, black lines) to β = 0.9 (dark lines) is even stronger than a change in the time pref-

erence rate from δ = 1.5% to δ = 0.1%. Consequently, society rapidly stops to increase

emissions and keeps the carbon dioxide concentration far below 550ppm. This increases

the odds to meet the two-degrees target significantly. Notice that as Graph (b) shows the

additional costs of implementing the corresponding strategy are moderate. To summarize,

if their are additional non-monetary effects like discomfort or illnesses,33 then it is even

more urgent to act immediately.

33Of course, illnesses will also produce costs eventually.
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5.2 Damage Process

Stanton et al. (2009), Weitzman (2009) and Pindyck (2014), among others, point out that

the choice of the damage process in climate change economics is involved and plagued by

uncertainty. Botzen and van den Bergh (2012) document that the DICE model is very

sensitive to choosing the damage function. Therefore, we analyze the effect of different

specifications on the optimal abatement demand in our model.

[Insert Figure 13 here]

In our benchmark calibration, we assume that the effect of global warming on economic

growth is linear. This might be too conservative since damages might rise more quickly if

temperatures get out of control. We thus extend our setting and compare the benchmark

setting with a situation where there is a quadratic damage effect as well. More precisely,

we assume that global warming negatively affects the expected growth rate of real GDP

in the following way:

gt = g − ζd1Tt − ζd2T
2
t ,

where g denotes the gross growth rate of real GDP. We consider three different parametriza-

tions of the growth rate. Figure 13 shows our results. The benchmark parametrization

(ζd1 = 0.003, ζd2 = 0) is depicted by black lines. A quadratic effect of global warming on

GDP growth makes society more cautious and raises its willingness to undertake stronger

actions. Even a small quadratic term of ζd2 = 0.0005 yields a strikingly increased emis-

sion control rate so that society keeps the two-degrees objective by a large margin. Notice

that with damages that rise quadratically it becomes so urgent to act that consumption

growth decreases by about 0.3% around the year 2070.

5.3 Cost Function, Economic Efficiency and Absolute Costs

[Insert Figure 14 here]

First, we study the impact of varying the specification of the cost function κ(t, α). We

consider three different shapes (low, benchmark, high).34 In all specifications, the abate-

ment costs are approximately the same in early years, but by the year 2050 they begin

34We consider the following scenarios: low-cost scenario with a1 = 14.67, a2 = 0.2, a3 = −13.97;
benchmark scenario with a1 = 4.38, a2 = 0.45, a3 = −3.68; high-cost scenario with a1 = 1.82, a2 = 0.7,
a3 = −1.12. All scenarios match McKinsey Data in 2015 and 2030 and provide a smooth interpolation.

26



to deviate. We find that the optimal abatement costs for green technologies are similar

in all cases. But due to different costs functions, this leads to lower emission control

rates, higher carbon dioxide concentrations and temperatures for scenarios with higher

abatement costs. Therefore, net GDP growth is lower for a high-cost scenario and vice

versa.

[Insert Figure 15 here]

The economic efficiency of green versus BAU investments is measured by the parameter

ζκ. Intuitively, the larger the value of ζκ, the more efficient are green compared to BAU

technologies and, hence, the higher is the demand for carbon abatement. Figure 15

confirms this intuition. We perform a sensitivity analysis varying ζκ ∈ {0.1, 1/3, 0.6}.
Comparing the policy decisions for different efficiency parameters, we see that the emission

control rate is significantly smaller if investments in green technologies are less efficient.

Of course, this implies a later and higher peak of the carbon dioxide concentration.

[Insert Tables 5 and 6 here]

Finally, we calculate the gross abatement costs for alternative specifications of the damage

and cost function. Additionally, we also study a case with stern preferences (δ = 0.001

and γ = 1). Tables 5 and 6 show these results that complement our earlier finding (see

Tables 2 and 3). First, notice that there are cases where the cost function is the same

as in the benchmark calibration. These are the scenarios with Stern preferences or a

mild quadratic damage function (ζd1 = 0.0025 and ζd2 = 0.0005). Second, there are two

cases where we use the high-cost function, either alone or in combination with a quadratic

damage function.

Obviously, the costs in the benchmark case and in the high-cost case are similar during

the first 10 years. The average annual costs are 21.5 and 23.2 billion dollars. Initially, the

gap is slightly bigger since in the high-cost case the cost function increases more steeply

eventually. Therefore, it is relatively cheaper for society to do more in the beginning.

Analogously, the costs in both cases with quadratic damages are similar as well, although

the levels are about 50% higher than in the two previous cases. This is because the risk

induced by quadratic damages makes society willing to act more drastically. Finally, if

we assume Stern preferences, then society cares a lot about the future and at the same

time has a very high elasticity of intertemporal substitution. Therefore, society is willing

to take extreme actions and the costs are about three times higher than in the benchmark

case.
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5.4 Recursive Utility

To disentangle relative risk aversion from intertemporal elasticity of substitution, one can

assume the decision maker’s preferences to be of Epstein-Zin type. The time-t utility

index Jαt associated with a given abatement strategy α over the planning horizon [0,∞)

is then recursively defined by

Jαt = Et
[∫ ∞

t

f(ωαs , J
α
s )ds

]
,

where the aggregator function f is given by the continuous-time Epstein-Zin aggregator

f(ω, J) =


δθJ

[(
ω

[(1−γ)J ]
1

1−γ

)1− 1
ψ − 1

]
, ψ 6= 1

δ(1− γ)J log
(

ω

[(1−γ)J ]
1

1−γ

)
, ψ = 1

(13)

with θ = 1−γ
1−1/ψ

. The parameter γ measures the degree of relative risk aversion, ψ > 0

denotes the elasticity of intertemporal substitution (EIS), and δ > 0 is the time preference

rate. For θ = 1 (or equivalently ψ = 1/γ), the preferences collapse to the standard time-

additive utility function. For θ < 1 (i.e. ψ > 1/γ) the agent prefers early resolution of

uncertainty and is eager to learn outcomes of random events before they occur. On the

other hand, if θ > 1 (i.e. ψ < 1/γ) the agent prefers late resolution of uncertainty. Notice

that Lemma A.1 still holds if f is replaced by (13).

In simulations not reported here, we have studied the effects of risk aversion and elasticity

of intertemporal substitution which can now be varied separately.35 We can confirm the

intuition that is briefly mentioned at the beginning of Section 3. If the risk aversion

is fixed and the elasticity is increased, then society is more likely to forgo current for

additional future consumption. In turn, it is willing to act more drastically. Similarly, if

we fix the elasticity and increase the risk aversion, then the same result materializes, which

reverses the relation that we found for time-additive utility in Section 5.1. Therefore, the

seemingly counterintuitive result for time-additive utility is driven by the dual role of γ in

this setting. Following Bansal and Ochoa (2011, 2012), a realistic choice of the preference

parameters in a recursive setting would involve a higher risk aversion and higher elasticity

of intertemporal substitution. More precisely, we would have

γ > 1.45, ψ >
1

1.45
,

35The results are available from the authors upon request.
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where 1.45 is the risk aversion in our benchmark case with time-additive CRRA utility.

Both effects would make society more prone to act quicker and more drastically. Therefore,

our benchmark results can be considered as conservative estimates of the optimal policies

in a recursive-utility setting.

6 Conclusion

In this paper, we study a stochastic equilibrium model for optimal carbon abatement

where we allow for an impact of temperature increases on economic growth. All key vari-

ables such as carbon concentration, global temperature and world GDP are modeled as

stochastic processes. Therefore, we can determine state-dependent optimal policies and

provide model-based confidence intervals for all our results. We perform a sophisticated

calibration of all three model components (carbon concentration, global temperature,

economy). In particular, we are able to match the future distributions of transient cli-

mate response (TCR) and equilibrium climate sensitivity (ECS) from the report of the

International Panel of Climate Change (2014).

Our findings suggest that postponing abatement action turns the odds against mankind:

If society acts now and implements the optimal abatement policy, then there is a 60-70%

chance that the climate can still be stabilized. Postponing the implementation of the

optimal policy for 10 years reduces this probability to about 30%. If society waits for 20

years, then the probability is below 10% and climate as well as economic growth might be

affected significantly. For instance, if society sticks to the current abatement policy, then

economic growth will be on average 40% lower by the beginning of the next century. Right

now the costs for implementing the optimal policy are moderate compared to the situation

that mankind faces when actions are postponed. Nevertheless, there is no guarantee that

the climate can still be stabilized since potential future feedback effects on temperature

are hard to estimate. On the other hand, the related uncertainty might also be considered

as another argument for acting quickly. This might be the only way to significantly reduce

the probability that these feedback effects unfold and negatively affect economic growth.

Of course, we have studied a highly controversial topic. Even if there was agreement on

our analysis, there remain major agency problems and coordination issues.
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A Solution Method

The optimization problem (8) cannot be solved explicitly. Therefore, we apply a numerical

approach similar as in Munk and Sørensen (2010). This appendix summarizes how the

problem can be solved numerically. First, we consider the unconstrained optimization

problem, i.e. for the moment we drop condition (4). In this case, we can reduce the

number of state variables by one.
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Lemma A.1. The indirect utility function of the unconstrained optimization problem has

the form

J(t, c, y, τ) = yγ̂F (t, c, τ), (14)

where γ̂ = (1− β)(γ − 1) and F solves the simplified Bellman equation

0 = sup
α

{
Ft + F

[
γ̂(µy(t)− α) +

1

2
γ̂(γ̂ − 1)σ2

y − πτ (τ)
]

+ Fc [c (g − ζdτ − γ̂ρcyσcσy)− (1− ζκ)κ(t, α)] + Fcc
1

2
c2σ2

c

+ Fτ

[
γ̂ρyτσyστ + ητ

(
µy(t)− α−

1

2
σ2
y

)]
+ Fττ

1

2
σ2
τ (15)

+ πτ (τ)F (t, c, τ + θτ ) +
1

1− γ
(cβ)1−γ − δF

}
,

The optimal abatement strategy is given by

α∗t = κα(t, ·)−1

(
(1− β)(1− γ)F − ητFτ

(1− ζκ)Fc

)
.

Proof. Substituting the conjecture into the Bellman equation yields the simplified HJB

equation (15). The optimal abatement strategy is then obtained by calculating the first-

order condition of the simplified HJB equation. 2

The Bellman equation cannot be simplified further. Therefore, we have to determine F

by solving the equation (15) numerically.

Basic Idea We use a grid based solution approach in order to solve the non-linear PDE

numerically. We discretize the (t, c, τ)-space using an equally spaced lattice. Its grid

points are defined by

{(tn, ci, τj) | n = 0, · · · , Nt, i = 0, · · · , Nc, j = 0, · · · , Nτ},

where tn = n∆t, ci = i∆c, and τj = j∆τ for some fixed grid size parameters ∆t, ∆c, and

∆τ that denote the distances between two grid points. The parameters Nτ and Nc are

chosen sufficiently large such that it is very unlikely that these boundaries are reached

within the given time horizon. In the sequel, Fn,i,j denotes the approximated indirect
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utility function at the grid point (tn, ci, τj) and αn,i,j refers to the corresponding optimal

abatement policy. We apply an implicit finite difference scheme.

Numerical Solution Approach In this paragraph, we describe the numerical solution

approach in more detail. We adapt the numerical solution approach used by Munk and

Sørensen (2010). The main difference is the infinite horizon setup of the model and the

jump component.

The numerical procedure works as follows. At any point in time, we make a conjecture

for the optimal abatement policy α∗n,i,j. A good guess is to use the value of the previous

grid point, since the abatement strategy is expected to vary slightly over a small time

interval, i.e. we set α∗n,i,j = αn+1,i,j. If we substitute the guess into the HJB equation, we

obtain a linear PDE that can be expressed as

0 = Ft +K1 +K2F +K3Fc +K4Fcc +K5Fτ +K6Fττ + πτF (t, c, τ + θτ )

with state dependent coefficients, i.e. Ki = Ki(t, c, τ). Due to the implicit approach, we

approximate the time-derivative by forward finite differences. In the approximation, we

use the so-called ’up-wind‘ scheme that stabilizes the finite differences approach. There-

fore, the relevant finite differences in the grid point (n, i, j) are given by

D+
t Fn,i,j =

Fn+1,i,j − Fn,i,j
∆t

,

D+
c Fn,i,j =

Fn,i+1,j − Fn,i,j
∆c

, D−c Fn,i,j =
Fn,i,j − Fn,i−1,j

∆c

,

D+
τ Fn,i,j =

Fn,i,j+1 − Fn,i,j
∆τ

, D−τ Fn,i,j =
Fn,i,j − Fn,i,j−1

∆τ

,

D2
ccFn,i,j =

Fn,i+1,j − 2Fn,i,j + Fn,i−1,j

∆2
c

,

D2
ττFn,i,j =

Fn,i,j+1 − 2Fn,i,j + Fn,i,j−1

∆2
τ

.

We approximate the jump terms via linear interpolation by the closest grid points, i.e.

F (t, c, τ + θτ ) = kτ1Fn,i,j+θ̂τ1 + kτ2Fn,i,j+θ̂τ2 ,

where θ̂τ1 and θ̂τ2 denote the closest grid points of τ + θτ . The variables kτ · denote the

weights resulting from linear interpolation. Substituting these expressions into the PDE
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above yield the following linear equation for the grid point (tn, ci, yj)

K1 + Fn+1,i,j
1

∆t

=Fn,i,j

[
−K2 +

1

∆t

+ abs

(
K3

∆c

)
+ abs

(
K5

∆τ

)
+ 2

K4

∆2
c

+ 2
K6

∆2
τ

]
+ Fn,i−1,j

[
K−3
∆c

− K4

∆2
c

]
+ Fn,i+1,j

[
−K

+
3

∆c

− K4

∆2
c

]
+ Fn,i,j−1

[
K−5
∆τ

− K6

∆2
τ

]
+ Fn,i,j+1

[
−K

+
5

∆τ

− K6

∆2
τ

]
+ πτ (kτ1Fn,i,j+θ̂τ1 + kτ2Fn,i,j+θ̂τ2).

Therefore, for a fixed point in time, each grid point is determined by a non-linear equation.

This results in a linear system of (NC + 1)(Nτ + 1) equations that can be solved for the

vector

Fn = (Fn,1,1, · · · , Fn,1,Nτ , Fn,2,1, · · · , Fn,2,Nτ , · · · , Fn,Nc,1, · · · , Fn,Nc,Nτ ).

Using this solution we update our conjecture for the optimal abatement policy in the

current point in time. We apply the first-order condition (A.1) and finite difference ap-

proximations of the corresponding derivatives. In the interior of the grid, we use centered

finite differences. At the boundaries, we apply forward respectively backward differences.

For instance, for (i, j) ∈ {2, . . . , Nc − 1} × {2, . . . , Nτ − 1}, we compute the new guess as

α∗n,i,j = κα(t, ·)−1

(
∆c(1− β)(1− γ)Fn,i,j − ∆c

∆τ
ητ (Fn,i,j+1 − Fn,i,j−1)

(1− ζκ)(Fn,i+1,j − Fn,i−1,j)

)
.

Having computed the new guess for the optimal policy, we perform a new iterative step.

We continue this iteration until there is no significant change between the results. Then,

the algorithm continues with the previous point tn−1 in the time directions until we reach

the end of the grid.

Implementation of Abatement Constraints The solution procedure described so

far does not deal with abatement constraints. These are equation (4) which ensures that

emissions stay positive and a non-negativity constraint αt ≥ 0. Since the upper bound (4)

involves Y , the separation (14) does not hold anymore. For this reason, we solve for the

optimal abatement policy if the weaker constraint 0 ≤ αt ≤ µy(t) + δy is imposed. This

constraint does not compromise the separation and the corresponding abatement decision
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is then given by

αt = min

[
µy(t) + δy, κα(t, ·)−1

(
(1− β)(1− γ)F − ητFτ

(1− ζκ)Fc

)]+

.

Since the modified constraint is always weaker, we obtain an upper bound J(t, c, y, τ) ≥
J(t, c, y, τ) for the indirect utility function of the true model where (4) is imposed. Of

course, αt is not feasible in the true model. To obtain a feasible strategy, we thus define

αt = min

[
µy(t) + δy

(
1− Y PI

Yt

)
, αt

]
,

where we cut off αt if it violates (4). Notice that the strategy αt is suboptimal. Since

we have the upper bound J , we can compute an upper bound on the loss that occurs if

we implement αt instead of the (unknown) optimal strategy. If J(t, c, y, τ) denotes the

indirect utility associated with αt, the upper bound on the welfare loss is given by

J(t, c, y, τ) = J(t, c(1− L), y, τ).

It turns out that this upper bound for the welfare loss is less than 0.1% and thus the

strategy αt is close to optimal.
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Preference Parameters
β Weight Parameter 1
γ Relative risk aversion 1.45
δ Time preference rate 0.015

Carbon Dioxide Dynamics
µe Growth rate of excess CO2 concentrations 0.0216
σy Carbon dioxide volatility 0.0016
Y0 Initial carbon dioxide concentration 399
Y PI Pre-industrial carbon dioxide concentration 280
ζe Conversion factor 0.1
δy Decay rate of excess carbon dioxide 0.0083

Global Warming Process
ητ Scaling parameter 2.592
στ Temperature volatility 0.059
ρyτ CO2/temperature correlation 0.04
T0 Current temperature anomaly 0.9

World GDP Dynamics
g Real GDP growth rate 0.0317
σc GDP volatility 0.0161
ρcy GDP/CO2 correlation 0.2858
ζd Damage parameter 0.003
C0 Initial GDP 58,000

Abatement Costs
a1 Cost function parameter 4.38
a2 Cost function parameter 0.45
a3 Cost function parameter -3.68
b1 Cost function parameter 3093
b2 Cost function parameter -0.60
ζκ Efficiency parameter 0.3333

Table 1: Benchmark Calibration. This table summarizes the parameters of the benchmark
calibration which is described in Section 3.
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Year 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

κ 6.5 9.7 13.7 16.0 18.5 21.2 24 26.9 30.0 33.3 36.8

Table 2: Optimal Abatement Costs. This table reports the median incremental abatement
costs (in billions of 2005 dollars).

Time Span 2015-2025 2015-2030 2015-2035
Present Value 142.43 248.01 364.63

Table 3: Present Values of Optimal Abatement Costs. This table reports the present
values of incremental abatement costs over the next 10, 15 and 20 years. Costs are expressed in
billions of 2005 dollars.

Year 2015 2025 2035 2045 2055 2065 2075 2085 2095
SCC 128.15 164.29 211.72 272.73 349.25 447.41 575.20 738.78 954.92

Table 4: Social Cost of Carbon. This table reports the social cost of carbon (in 2005 dollars
per tonne of carbon dioxide).

Year 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Benchmark 6.5 9.7 13.7 16.0 18.5 21.2 24 26.9 30.0 33.3 36.8
Stern 25.7 33.5 40.6 47.6 54.6 61.7 69.0 76.2 84.0 92.0 100.3
Qd 11.0 16.7 20.3 24.0 27.7 31.8 35.9 40.3 45.1 49.9 54.7
Hc 9.7 12.4 14.9 17.5 20.0 22.7 25.4 28.3 31.4 34.7 38.1
QdHc 14.1 18.3 22.1 26.0 30.0 33.9 38.3 42.6 47.4 52.1 57.1

Table 5: Abatement Costs for Alternative Specifications. This table reports the median
incremental abatement costs (in billions of 2005 dollars) for alternative specifications of the
damage and cost function. Here Qd stands for a specification with mild quadratic damages
(ζd1 = 0.0025 and ζd2 = 0.0005), Hc refers to the high-cost scenario, and QdHc refers to a
scenario with quadratic damages and high costs. The table also reports the costs for stern
preferences (δ = 0.001 and γ = 1), but the benchmark specifications of the damage and cost
function.
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Year 2015-2025 2015-2030 2015-2035
Benchmark 142.43 248.01 364.63
Stern 481.43 874.86 1343.6
Qd 210.29 366.67 539.64
Hc 152.19 260.57 378.98
QdHc 227.20 389.69 567.29

Table 6: Present Values of Abatement Costs for Alternative Specifications. This
table reports the present values of incremental abatement costs over the next 10, 15 and 20
years. Costs are expressed in billions of 2005 dollars. It considers alternative specifications of
the damage and cost function. Here Qd stands for a specification with mild quadratic damages
(ζd1 = 0.0025 and ζd2 = 0.0005), Hc refers to the high-cost scenario, and QdHc refers to a
scenario with quadratic damages and high costs. The table also reports the present value for
stern preferences (δ = 0.001 and γ = 1), but the benchmark specifications of the damage and
cost function.

Damage Process: Translate
Abatement Policy: 
Investments in green

Economic Model
‐ Gross Domestic Product
‐ Green Technology
‐ Abatement Cost
‐ Economic Shocks

Equilibrium
Maximize global welfare by
choosing an optimal abatement
control

damages in the ecosystem in 
reduced economic growth

Investments in green
technologies are costly,
but reduce emissions.

Climate Change Process: 
Emissions yield an increase

in global temperature

Carbon Dioxide Model
‐ Carbon Dioxide Emissions
‐ Carbon Dioxide Concentration
‐ Natural Sinks, Carbon Shocks

Climate Model
‐ Global Temperature
‐ Climate Shocks 
‐ Feedback Effects / Fat Tails

Figure 1: Building Blocks of the Model.
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Figure 2: Calibration of the Carbon Dioxide Model. Graph (a) shows historical carbon
dioxide concentrations (crosses) and our median path based on simulations with the estimated
parameters (solid line). The dashed line depicts the regression line if the grwoth rate was
assumed to be constant over time. (b) shows a prognosis for the BAU evolution of the carbon
dioxide concentration in the atmosphere (black line) and compares the prognosis with a carbon
dioxide model whose growth rate is constant over time (dashed line). The crosses in Graph (c)
depict pairs of historical carbon dioxide emissions (measured in GtCO2) and emission triggered
increases in carbon dioxide concentrations (measured in ppm). The grey line depicts the related
regression line. The estimated parameters for our fitted curves are given in Table 1.
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Figure 3: Calibration of the Climate Model. The crosses in Graph (a) depict pairs
of empirical global warming and atmospheric carbon dioxide data. The solid line depicts the
corresponding regression curve. The estimated parameters for our fitted curve are stated in
Section 3. (b) shows a histogram of the simulated transient climate response. (c) depicts a
histogram of the equilibrium climate sensitivity. The histograms are based on a simulation of 1
million sample paths.
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Figure 4: Calibration of the Cost Function. This figure depicts the marginal abatement
cost (MAC) for the reference years 2015 and 2030 (solid lines). The unit of the x-axis is GtCO2.
The prices of the y-axis are in 2005 euros. Each MAC function is chosen such that it fits the
corresponding positive part of the McKinsey data (crosses). The dashed lines depict smooth
interpolations of this data.
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Figure 5: Calibration of World GDP. Graph (a) shows historical GDP data (crosses) and
our median path based on simulations with the estimated parameters (solid line). (b) depicts
the expected BAU evolution of world GDP over the next 100 years (solid line) as well as the 5%
and 95% percentiles (dashed lines). The estimated parameters for our fitted curves are given in
Table 1.
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Figure 6: Median Benchmark Results. Based on the benchmark calibration of Section
3, the graphs depict our benchmark results. Graph (a) depicts the median carbon dioxide
concentration of the optimal policy (black line). The 5th and the 95th percentiles are represented
by light dashed lines. The median BAU path is expressed as dotted line. The black line in (b)
depicts the median GDP growth, whereas the dotted line is the median GDP growth in the
BAU case. (c) shows results on the global temperature increase. The black line depicts the
median global temperature increase for the optimal policy. The 5th and the 95th percentiles are
represented by light dashed lines. The median BAU path is expressed as dotted line. (d) shows
the median carbon dioxide emissions of the optimal policy (solid line) and the corresponding
emission control rate (dash-dotted line).
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Figure 7: Global Warming Results. The graph depicts percentiles (10%-90%) for the
evolution of global temperature over the next 150 years. The solid lines are the median paths.
Panel (a) depicts the optimally controlled warming process. (b) shows the evolution if optimal
abatement action is postponed by 10 years. (c) shows the percentiles if optimal abatement
action is postponed by 20 years. (d) depicts the percentiles for the BAU case.
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Figure 8: Benchmark Results for Specific Sample Paths. The graph shows the evolution
of carbon dioxide, GDP, global warming and optimal carbon dioxide emissions for four scenarios
(represented by dashed lines). The four scenarios are as follows: (i) Black lines depict the paths
corresponding to the worst case scenario in our simulations. (ii) Dark lines show the paths that
belong to a typical 95th percentile scenario. (iii) Mid-gray lines show the paths of typical median
scenario. (iv) Light lines show the paths of a typical 5th percentile scenario.
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Figure 9: Benchmark Results vs. Delaying Abatement Action. The left column of
graphs depicts the median evolutions of (a) carbon dioxide, (d) world temperature differentials,
(g) world GDP, and (j) carbon dioxide emissions over the next 100 years. Black lines label the
benchmark case, dark lines mark a scenario where society postpones abatement actions by 10
years, and light lines label a scenario with 20 years of delay. The second column of graphs shows
corresponding results for specific sample paths if abatement actions are postponed by 10 years.
Black lines depict the paths corresponding to the worst case scenario in our simulations. Dark
lines show the paths that belong to a typical 95th percentile scenario. Mid-gray lines show the
paths of typical median scenario. Light lines show the paths of a typical 5th percentile scenario.
The third column depicts these paths if actions are delayed by 20 years.

45



2020 2040 2060 2080 2100

400

500

600

(a) CO
2
 Concentration [ppm]

Year
2020 2040 2060 2080 2100

1.5

2

2.5

3

(b) GDP Growth [%]

Year

2020 2040 2060 2080 2100
0

1

2

3

(c)  Global Warming [°C]

Year
2020 2040 2060 2080 2100

0

20

40

(d) Emissions [GtCO
2
], Control Rate [%]

Year

0

25

50

75

Figure 10: Sensitivity Analysis for Time Preference Rate. The graphs show the median
paths of the key variables if the time preference rate is varied. The figure has the same structure
as Figure 6 which shows the benchmark results for δ = 1.5% (black lines in Figures 6 and 10).
The alternative values are δ = 0.1% (light lines, Stern discounting) and δ = 2.6% (dark lines).
BAU paths are depicted by dotted lines. Graph (a) shows the carbon dioxide concentration in
the atmosphere, (b) median GDP growth, (c) median changes in global temperature, (d) optimal
carbon dioxide emissions (solid lines) and emission control rate (dash-dotted lines).
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Figure 11: Sensitivity Analysis for Relative Risk Aversion. The graphs show the median
paths of the key variables if the risk aversion is varied. The figure has the same structure as
Figure 6 which shows the benchmark results for γ = 1.45 (black lines in Figures 6 and 10). The
alternative values are γ = 2/3 (light lines) and γ = 3 (dark lines). BAU paths are depicted by
dotted lines. Graph (a) shows the carbon dioxide concentration in the atmosphere, (b) median
GDP growth, (c) median changes in global temperature, (d) optimal carbon dioxide emissions
(solid lines) and emission control rate (dash-dotted lines).
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Figure 12: Sensitivity Analysis for Disutility of Pollution. The graphs show the median
paths of the key variables if the disutility of pollution is increased. The figure has the same
structure as Figure 6 which shows the benchmark results for β = 1 (black lines in Figures 6 and
10). For this value there is no disutility of pollution. The alternative values are β = 0.8 (light
lines) and β = 0.9 (dark lines). BAU paths are depicted by dotted lines. Graph (a) shows the
carbon dioxide concentration in the atmosphere, (b) median GDP growth, (c) median changes
in global temperature, (d) optimal carbon dioxide emissions (solid lines) and emission control
rate (dash-dotted lines).
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Figure 13: Sensitivity Analysis for Damage Process. The graphs show the median paths
of the key variables for different specifications of the damage function. The figure has the same
structure as Figure 6 which shows the benchmark results for a linear damage function with
ζd1 = 0.003 and ζd2 = 0 (black lines in Figures 6 and 10). The alternative specifications involve
a quadratic damage function with ζd1 = 0.0025 and ζd2 = 0.0005 (light lines) or ζd1 = 0.002
and ζd2 = 0.001 (dark lines). BAU paths are depicted by dotted lines. Graph (a) shows the
carbon dioxide concentration in the atmosphere, (b) median GDP growth, (c) median changes
in global temperature, (d) optimal carbon dioxide emissions (solid lines) and emission control
rate (dash-dotted lines).
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Figure 14: Sensitivity Analysis for the Cost Function. The graphs show the median
paths of the key variables for different specifications of the cost function. The figure has the
same structure as Figure 6 which shows the benchmark results for a medium cost scenario
(black lines in Figures 6 and 10). The alternative values are a low cost scenario (light lines) and
a high cost scenario (dark lines). BAU paths are depicted by dotted lines. Graph (a) shows the
carbon dioxide concentration in the atmosphere, (b) median GDP growth, (c) median changes
in global temperature, (d) optimal carbon dioxide emissions (solid lines) and emission control
rate (dash-dotted lines).
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Figure 15: Sensitivity Analysis for Efficiency Parameter. The graphs show the median
paths of the key variables if the efficiency parameter of green technologies is varied. The figure
has the same structure as Figure 6 which shows the benchmark results for ζκ = 1/3 (black lines
in Figures 6 and 10). The alternative values are ζκ = 0.6 (light lines) and ζκ = 0.1 (dark lines).
BAU paths are depicted by dotted lines. Graph (a) shows the carbon dioxide concentration in
the atmosphere, (b) median GDP growth, (c) median changes in global temperature, (d) optimal
carbon dioxide emissions (solid lines) and emission control rate (dash-dotted lines).
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